Closed Orbit Correction at KARA Storage Ring

lgor Križnar 5.3.2018

Orbit Correction Modifications

- Basic equation: $x_{(M BPMs)} = R_{(N \times M response matrix)} \times a_{(N correctors)}$ (N \neq M)
- Added frequency to the RM equation $a_f = \underline{R}^{-1} \times x + D \times \delta f/f = \underline{R}^{-1} \times x_f$
- Corrector reduction $x_{calc} = \underline{R}_{full} \times a_{used} \rightarrow a_{reduced} = \underline{R}^{-1}_{reduced} \times x_{calc}$
 - good for reducing over-usage of correctors or if they are close to their limits
- BPM-fix for defined BPMs (e.g. A and B) $a_{AB} = \underline{R}^{-1} \times (x_{AB} - x_{AB-ref})$
- Combining solutions $a = c_f \times a_f + c_r \times a_{reduced} + c_{AB} \times a_{AB}$ ($c_f + c_r + c_{AB} = 1$)
 - $C_f : C_{AB}$ is 50% : 50%
 - Above treshold RMS 0.150 mm only a_f is used

Orbit Correction Implementation

- Reducing solution

 a_{applied} = a_{current} + c_{scale} × a_{calculated}
 c_{scale} is around 30%
- Application is steps $n_{steps} = a_{max calculated} / a_{max allowed}$ for i to $n_{steps} do a_{applied} = a_{initial} + i \times c_{scale} \times a_{calculated} / n_{steps}$
- Fast mode
 - using correctors is time costly, avoid doing that
 - if $a_{max calculated} < a_{treshold}$ then skip correction
 - do one step $a_{applied} = a_{current} + c_{scale} \times a_{calculated} / n_{steps}$ then recalculate
 - while x_{RMS change} < x_{RMS treshold} wait

Live Orbit

- Raw: direct BPM readings
- "default": in context of reference

Reference Orbit

- Reference can be in principle any good orbit
- There are good reasons that BBA offset orbit (design or nominal orbit) is a good reference orbit.
- They could be swapped for different purposes during operation.
- SVD optimizes RMS around reference (around 0.120 mm), not individual BPMs.
 - Achieving better RMS reduces drifts and jumps.

Expert view

Comparison of live (current) orbit to stored orbit.

6